Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l2), l3)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(cons, app2(f, h)), app2(app2(map, f), t))
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(append, t)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(append, app2(app2(map, f), l1))
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l1), app2(app2(append, l2), l3))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(append, l2)
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(append, t), l)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l1)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l2)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(cons, h), app2(app2(append, t), l))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(cons, app2(f, h))
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l2), l3)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(cons, app2(f, h)), app2(app2(map, f), t))
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(append, t)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(append, app2(app2(map, f), l1))
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l1), app2(app2(append, l2), l3))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(append, l2)
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(append, t), l)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l1)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l2)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(cons, h), app2(app2(append, t), l))
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(cons, app2(f, h))
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l2), l3)
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l1), app2(app2(append, l2), l3))
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(append, t), l)
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l2), l3)
APP2(app2(append, app2(app2(append, l1), l2)), l3) -> APP2(app2(append, l1), app2(app2(append, l2), l3))
APP2(app2(append, app2(app2(cons, h), t)), l) -> APP2(app2(append, t), l)
Used argument filtering: APP2(x1, x2) = x1
app2(x1, x2) = app2(x1, x2)
append = append
cons = cons
nil = nil
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l1)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l2)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l1)
APP2(app2(map, f), app2(app2(append, l1), l2)) -> APP2(app2(map, f), l2)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(f, h)
APP2(app2(map, f), app2(app2(cons, h), t)) -> APP2(app2(map, f), t)
Used argument filtering: APP2(x1, x2) = x2
app2(x1, x2) = app2(x1, x2)
append = append
cons = cons
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(append, nil), l) -> l
app2(app2(append, app2(app2(cons, h), t)), l) -> app2(app2(cons, h), app2(app2(append, t), l))
app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, h), t)) -> app2(app2(cons, app2(f, h)), app2(app2(map, f), t))
app2(app2(append, app2(app2(append, l1), l2)), l3) -> app2(app2(append, l1), app2(app2(append, l2), l3))
app2(app2(map, f), app2(app2(append, l1), l2)) -> app2(app2(append, app2(app2(map, f), l1)), app2(app2(map, f), l2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.